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Hot spot dynamics in 1D spherical implosions
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The decelerating slab problem provides the basic
understanding of the deceleration phase and
hot spot formation
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e The shock reflected from the wall slows down the foil,
which in turn compresses the gas and decelerates.

« The 1-D problem can be solved analytically leading to a
clear understanding of the relevant physics issues.



The low density gas is heated to form a hot spot
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The heat flux leaving the hot spot is deposited onto the shell surface
causing mass ablation from the shell into the hot spot. The hot spot
mass increases in time.
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Hot spot volume ~ R

Hot spot density

Use EOS p=m;p/2T
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* Use the areal density scaling found in previous lecture
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* Find the temperature scaling. The hot spot temperature
mainly depends on the implosion velocity.
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e Simulation results (without a-heating) confirm the theory
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HYDRODYNAMIC INSTABILITIES
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THE CLASSICAL RAYLEIGH-TAYLOR INSTABILITY
of
A HEAVY FLUID SUPPORTED BY A LIGHTER FLUID
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EQUILIBRIUM CONDITIONS

Pressure gradient is
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Acceleration Phase

The classical R-T is just Newton’s law at work: F=mal!
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In the laser irradiated targets the heat/ablation
front penetrates at the ablation velocity

g=-a=acceleration in the target frame
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@

Critical surface

S

Laser
Energy
deposited

blow-off
or conduction
zone

Ablated plasma
Light
Hot

ablation front

: Target

: heavy
: cold

a=acceleration in the lab frame

—

u,=Ablation velocity



The ablation velocity is the speed at which the ablation

front penetrates into the target. It can be calculated from

the 1D theory results
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The ABLATIVE R-T is just Newton’s law at work again
but with a restoring force: the dynamic pressure.
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Another stabilizing effect is the physical removal of
the perturbation through ablation

UR

LLE

>

Here V, is u =ablation velocity
M, = PaVa
AX, = VAt

Yel = VATKY

Pheavy ~ Plight
At = : y - .Q
Pheavy T Plight

k x

e Classical:v(t,x)~e
e Front frame (X'): x =x" +V,t

e In the front frame: v(t,x") ~ e(frc_kva)t_kx — v ="Yel — KV



Another stabilizing effect is the ablation-driven
convection of the vorticity off the ablation front
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A cutoff in the unstable spectrum limits the
number of unstable modes
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The ablative growth is significantly less than
the classical value. Modes with k> k_ are stable
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Only modes with kA~1 break the targets because the
distortion inside the target decays in space 7(x)=7.&"
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Most dangerous modes have mode number
equal to the In-Flight-Aspect-Ratio IFAR

« Wave number in planar geometry k=271

» Wavelength in spherical geometry: A= 272'le

 Wave number in spherical geometry K=2n/A=/IR

 Most dangerous modes in spherical geometry

—
kA =(A/R=1(/1FAR =1 EEEED

*Aspect ratio of the target studied in previous lecture IFAR~70

= IFAR

most—dangerous

« Most dangerous modes of our target=> ¢ ~ 70



How much does a perturbation grow during the
acceleration phase due to the (linear) RT instability?
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What if the initial perturbations on the targets are so large
that the RT become immediately nonlinear (= multimode
Interaction) and a turbulent mixing front develop?
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* The figure of merit is the size of the mixing front to the target thickness
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*RT simulations gives ,3 ~ 0.05

*Our target with IFAR=70 would be fully mixed = NO SHELL LEFT!
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Lot of work on hydrodynamic instabilities
needs to be done
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 Multimode, turbulent Rayleigh-Taylor instability is
not well understood

 The effect of ablation on the nonlinear multimode
evolution is not well understood

» The effect of the initial conditions on the turbulent
front dynamics is not well understood

* This is important stuff for inertial fusion!
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