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Hot spot dynamics in 1D spherical implosions 
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The decelerating slab problem provides the basic 
understanding of the deceleration phase and  
hot spot formation 



Evolution of pressure (red) and density (blue). 

The low density gas is heated to form a hot spot 
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The heat flux leaving the hot spot is deposited onto the shell surface 
causing mass ablation from the shell into the hot spot. The hot spot 
mass increases in time. 
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The heat leaving the hot spot 
cannot penetrate the shell 
because the shell is cold and  
its thermal conductivity is low, 
 

     κshell<< κhot spot 
 
The heat is deposited on the 
shell inner surface causing 
mass ablation off the shell 
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Hot spot density Use EOS ρ=mip/2T 

Mass         
conservation 

      Energy        
Conservation 
(hot spot internal 
energy comes from 
shell kinetic energy) 

Hot spot      
compression time 

Hot spot  
temperature 
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• Use the areal density scaling found in previous lecture 
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• Find the temperature scaling. The hot spot temperature 
  mainly depends on the implosion velocity. 
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Outer shell  
surface 

HYDRODYNAMIC INSTABILITIES 

g= -a=acceleration in 
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a=acceleration in the 
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THE CLASSICAL RAYLEIGH-TAYLOR INSTABILITY 
of  

A HEAVY FLUID SUPPORTED BY A LIGHTER FLUID 
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EQUILIBRIUM CONDITIONS 



Acceleration Phase 

The classical R-T is just Newton’s law at work: F=ma! 
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In the laser irradiated targets the heat/ablation 
front penetrates at the ablation velocity 

a=acceleration in the lab frame 

ua=Ablation velocity 
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The ablation velocity is the speed at which the ablation 
front penetrates into the target. It can be calculated from  
the 1D theory results 
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The ABLATIVE  R-T is just Newton’s law at work again 
but with a restoring force: the dynamic pressure.  
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Another stabilizing effect is the physical removal of  
the perturbation through ablation 

Here Va is ua=ablation velocity 
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Another stabilizing effect is the ablation-driven 
convection of the vorticity off the ablation front 
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A cutoff in the unstable spectrum limits the 
number of unstable modes  

•The cutoff wave number  depends only on the dynamic pressure: 
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The ablative growth is significantly less than 
the classical value. Modes with k> kc are stable 
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Only modes with k∆~1 break the targets because the 
distortion inside the target decays in space  
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Most dangerous modes have mode number 
equal to the In-Flight-Aspect-Ratio IFAR 

• Wave number in planar geometry 2 /k π λ=

• Wavelength in spherical geometry:  2 /Rλ π= 

• Wave number in spherical geometry 2 / /k Rπ λ= = 

• Most dangerous modes in spherical geometry 
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•Aspect ratio of the target studied in previous lecture IFAR~70 

• Most dangerous modes of our target ~ 70
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How much does a perturbation grow during the 
acceleration phase due to the (linear) RT instability? 
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What if the initial perturbations on the targets are so large  
that the RT become immediately nonlinear ( multimode 
interaction) and a turbulent mixing front develop? 

•Mixing front of width h advances according to  
2
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•Our target with IFAR=70 would be fully mixed  NO SHELL LEFT! 

•Drop mode wavelengths as scale lengths  
•Only scale length left is gt2  
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Lot of work on hydrodynamic instabilities  
needs to be done 

• Multimode, turbulent Rayleigh-Taylor instability is 
  not well understood 
 
• The effect of ablation on the nonlinear multimode 
  evolution is not well understood 
 
• The effect of the initial conditions on the turbulent  
  front dynamics is not well understood 
 
• This is important stuff for inertial fusion!   
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