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In short pulse high power laser-matter interaction, one of the utter-
most problems is how to transfer laser energy to the overdense plasma

Simulations with different depth profiles show a general enhancement
of the kinetic energy acquired by the accelerated test particles when

Total field can be expressed by Rayleigh’s expansion (6] : e With NO grating, matching condition kg = kz < 1 => no way

that is created in front of the target, when the temperature is in the ( B(z,y) = ctklax=0y) Z B, otk (ma+3y) for y > h/2 o With grating, "reflection” at Bragg planes give: kgp = kg + ng the plasmonic resonance is excited, as can be observed in figures below.
range of keVs, since the collisional absorption mechanism loses effi- 0 [t should be noticed that in the case h/d = 0.5 we are totally out of
ciency due to the scaling of collisional frequency with temperature: < B(x,y) = Z C, otk (onz—"my) for y < —h/2 Fust Brfouin Zos the approximations that allow us to take as relation dispersion the

\ - LSS — = exact curve of the flat case, and replicate it according to the grating

periodicity:.

Other energy transter mechanism have been found and are now well |
known,[1], [2],[3]. with ap = ky £0)0/d, B = /1 — a2, vy = /n? — a2
For h/d < 1 we may assume Bj, ~ 1, and C), ~ ty, where r and ¢

Kinetic energy spectrum

Here, we investigated the possibility to couple the laser energy to the are the Fresnel coefficients:

target introducing a periodic modulation at the solid-void interface. 2 /d h o

This leads to a transfer mechanism that occurs at the solid surface nQﬁn — Tn QHQﬂn . . ot resonant case
and involve a collective mode excitation. In particular, we studied the rlan) = 26y, + Yn Han) = B3y + Yn At normal incedence, SPRs are excited for. |

influence of this surface mode on the dynamics of hot electrons by a

test particle approach: at first we studied the distribution of the e.m. o If R{n"} < 0 == Poles in the denomitators of Fresnel coefficients 2 = w_12? L n2g2 _ \/ w_f; 1 pdgd

fields and and after the dynamics of test particles in such fields. By e This corresponds to a solution of homogeneous Maxwell Equations "2 ! 4 !

this approach we do not consider the self consistent fields induced by = Maxwell equations eigenmode

the particle motion Comparison between resonant and not resonant cases:

e Characterized by ay, > 1, B, € & = Localization near the inter-
face: surface mode! . . .

Motivation of the choice:

4
. , , , . , Relation dispersion of the so-called Surface Plasmon Resonance (SPR) - 5
e [t is known in optics that diffraction gratings present greater energy o = i =
adsorption than flat interfaces [4] | = ¢ G0
e in fully self-consistent (Particle-In-Cell) simulations it is difficult to w? € W? [ WP —w? -
| AVE . ( . ) . . . k2 = — k2= £ s : | “A“‘.‘ < All cases refer to ag = 1.
distinguish the contribution in laser coupling coming from different P2l +4e¢ P2\ 2w? — w]% ' Y i ° -
transfer mechanisms |5). N g y x(pm) z(pm)
~— ~—
for a Drude metal /
\ )
5. Particle dynamics 7. Conclusions & Future Work
. . Di lonl t1 t1 lved ically: i i i
Let our grating profile be described by f(z) = % cos(2mz/d) The geometry of IINENSIONIESS mMotlon equatlon solved numerically We have demonstrated that the introduction of a.n?o.dulatlon gt the targgt
: N : , surface leads to field enhancement and to the possibility to excite plasmonic
the scattering problem is given in figure below: dp; Dim o _
d, _ ]53<XZ.;W757 dm) + —2 % B(Xi,mata dm) resonances (also at normal laser incidence) which greatly enhance electron
t Ti,m acceleration near the surface.
where p = pe/mec, X =1/\, E = qg it B - aoﬂ ag = q|A Om = wmAT and AT =t,,75 — tp. Further WOI'kI.
e/ ’ MeWC’ MW’ mec? T en e Study of non linear effects for ag > 1
e 7 — labels partide Hlltlaﬂy at the interface: (jS7 yz) — (Z d/N) f(@ d/]\/v))7 (vx,’ia vy,i) — (O7 vth>7 with N = # particles e Phase interval between re-initialisation should be dependent on fields inten-
e m = labels temporal delay after which a bunch of N particles is initialized : ¢, = m (t.,g0 — to)/T, with T = # samples sty
]
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