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The first RTI and RMI planar experiments on OMEGA-EP 
were a useful tool in planning for future OMEGA-EP 
experiments.  

• An un-modulated CH[125] foil was driven with a single OMEGA-EP beam 
at an intensity of 2 ¥ 1014 W/cm2 for 2.5-ns and backlight with a Sc[12.5] 
foil.

• System and diagnostic issues hindered the experiment, but useful
results were still obtained.

• Modulations imprinted by the OMEGA-EP beams grew significantly in the 
Sc[12.5] backlighter.

• Future experiments on OMEGA-EP will require beam smoothing, longer 
pulse lengths, and higher beam energies.
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Introduction to the Rayleigh-Taylor instability

• Rayleigh-Taylor Instability (RTI):
–Instability at the interface of fluids with different densities when a 
lighter fluid supports a heavier fluid.
–In ICF, RTI occurs during the acceleration and deceleration phases of 
the implosion.

–Modulations grow exponentially early in time, then grow linearly after 
reaching the saturation level (Zk=λ/10) with the growth rate given by:1
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Introduction to the Richtmyer-Meshkov Instability

• Richtmyer-Meshkov Instability (RMI):
– Instability at the modulated interface of two fluids when a shock wave 

crosses the interface.  
– In ICF, the RMI seeds modulations for the faster growing RTI as well as 

contributing to turbulent mixing between the capsule’s fuel and shell.

– Modulation evolution in the linear and non-linear regime can be 
characterized by the expression: 3
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On OMEGA-EP, an un-modulated CH[125] foil was 
driven at an intensity of                     for 2.5-ns and 
backlight by a Sc[12.5] foil. 
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Face on x-ray radiography of a CH[125] target backlight 
by a Sc[12.5] foil showed significant modulation growth 
in the backlighter.
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Features imprinted 
by the drive beam 
grow much faster 

than anticipated for a 
drive target of this 
thickness.  A future 
shot was planned 

using only the 
backlighter to 

explore whether the 
growth was 

occurring in the 
target, backlighter, or 

both.



Modulation growth was dominated by the Sc[12.5] 
backlighter foil, instead of the CH[125] drive target. 
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A misaligned pinhole array hindered this Sc[12.5] 
‘backlighter only’ shot, but useful data was recovered. 
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This ‘backlighter 
only’ shot shows 

similar results to the 
previous shot that 

used both the 
CH[125] target and 

Sc[12.5] backlighter.  
Unfortunately, the 
pinholes we not 

properly installed, 
but the data indicates 

that the majority of 
the growth is 

occurring in the 
backlighter.



Large scale features are also observed in the Sc[12.5] 
backlighter foil only experiment.
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Overall, the shot day was very challenging, but useful 
data was obtained.

• The OMEGA-EP pulse length was inconsistent, compromising some of 
the data.

• Problems with the x-ray framing camera also compromised some of the 
data:

– Timing was inconsistent – compromised data when combined with 
reduced pulse length of OMEGA-EP laser.

– The framing camera film package was damaged while under 
vacuum, and exposed during the recovery process on 1 shot.

– The pinhole array was improperly installed for 1 shot, 
compromising data on 2 of the 4 framing camera strips.

• Three targets shots were taken, with useful data obtained on 2 of the 3 
shots.
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Future RTI and RMI experiments on OMEGA-EP will 
require beam smoothing, longer pulse lengths (10-ns), 
and higher energies (5-kJ).
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•10-ns drive with an intensity of ~ 3 x 1014 W/cm2

• 6-7 keV x-rays will radiograph the modulated 
Ti[10] layer.

X-ray Transmission for CH[50]Ti[10]CH[500]
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Density Profile of CH[500]Ti[10]CH[50] <== 3 x 1014 W/cm2 @ t=6-ns
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LILAC simulation results show the Ti[10] layer travels at 
nearly constant velocity after the initial shock.

Velocity of Ti[10] layer
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These conditions are ideal for experimentally 
measuring modulation growth due to the RMI 

independently from the RTI that typically 
dominates ICF instability experiments.
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Low target acceleration minimizes the effect of RT 
growth, allowing the RMI to dominate.

RMI

RTI
Saturation Level (RTI)

Conditions from LILAC 
simulation:
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36.9 - μm/nsΔU

0.35A

3.6 - μm/ns2g

60 - μmλ

0.125 - μma0
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