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•1kg DT 340 Terajoules

•1 TJ = 1012J

What is nuclear fusion?

D + T α(3.5MeV)+n(14.1MeV)



What could you do with a Terajoule?
(~3g of DT)

You can drive your car for 625,000 miles

You can keep your furnace running for 8 years

You can blow things up! 1TJ = 250 ton of TNT





Fusion doesn’t come easy

•
100,000,000 0C



• Probability for fusion reactions to occur is low at low 
temperatures because of Coulomb repulsion force.
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• If the ions are sufficiently hot (i.e. large random velocity)
then they can collide by overcoming Coulomb repulsion
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A “hot plasma” at 100M 0C is needed



Doesn’t it take a lot of energy to
keep the plasma at 100M 0C? YES!

SOLUTION:

Let the plasma do it itself!

+
Deuterium

Tritium

Helium (alpha particle)
stays in the plasma because
is charged and collides with
the electrons

The neutron leaves
because is neutral

THE α-PARTICLES HEAT THE PLASMA!



Under what conditions the plasma 
keeps itself hot?

P= pressure in atmospheres

τ= confinement time in seconds

P τ
 

> 10 atm-sec
Ignition condition



The plasma is too hot to be kept
inside a solid container

SOLUTIONS:
# 1 Use a magnetic field to contain it. 

Since the plasma is made of charged particles
(ions + electrons), a magnetic field should confine it.

Magnetic Confinement Fusion
P~atm, τ~sec, T~108 oC

#2 Don’t confine it!
Or you can say that the plasma is confined by

its own inertia
Inertial Confinement Fusion

P~Gigabar, τ~nanosecond, T~108 oC



The high pressures and temperatures required for 
inertial fusion can be achieved through

laser-driven spherical implosions of a thin shell 

Achieve extreme states of matter of interest
for inertial confinement fusion and/or general HEDP

Achieve high temperatures (~ 108-9 oC 10-100keV)

Achieve high densities  (~300-1000g/cc)

Achieve high pressures (~109-12 atm Gbar-Tbar)

Achieve high areal densities =ρR  (~1-3g/cm2)

∫

Laser-driven spherical implosions can be used to:
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CH or Be ablator may or 
may not be present. Here, 
we consider DT targets only 
(no CH or Be)
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Laser-driven imploding capsules are mm-size shells
with hundreds of μm thick layers of cryogenic solid DT



Fundamentals of 
implosion hydrodynamics

LECTURE # 1



We will use the conservation equations of
gas-dynamics + ideal gas EOS to treat the DT plasma
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Dimensional
analysis 

 velocitythermal=thυ
frequency collision =collν

 timecollision =collτ
2/5

0Tκκ ≈
Plasma thermal conductivity

The plasma thermal conductivity goes like a power law of T
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Adiabatic sound speed when the entropy is
conserved along the fluid motion

Isothermal sound speed when the temperature
is constant along the fluid motion

Sound speed in an ideal DT gas/plasma



The laser light cannot propagate past 
a critical density (see LPI lectures)

ρ

Light wave

Density

•
Critical
density
ρcr,  ncr

• Critical density given by: plasma frequency= laser frequency
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The laser generates a pressure by depositing
energy at the critical surface

Laser energy
deposited near
critical surface
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Light
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Heat flows by
conduction

-g=acceleration in the lab frame

Corona
Isothermal
expansion
Time-dependent
Supersonic flow
M>1

conduction zone
steady state
Subsonic flow M<1

Sonic point M=1

Critical surface
ρ~4.6•10-3g/cc

M=Mach # = u/Cs
isoT
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Energy deposited by the
laser near critical W/cm3s
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• Integrate around critical surface xc
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• Solving at steady state in the conduction zone (x<xc) leads to
−≤∂+ cx xxTpv for      ~)( κε

• Since the temperature gradients are small in the corona, the
heat flux is small  
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• Use the energy conservation equation

What is the pressure generated by the laser?



• At the sonic point (i.e. critical surface) 
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• The total pressure (static + dynamic) is the ablation pressure 
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What is the mass ablation rated induced by the laser?

• At steady state, the mass flow across the critical surface  
must equal the mass flow off the shell (i.e. the mass   
ablation rate ma )
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What is the entropy of an ideal gas/plasma?

• The entropy S is a property of a gas just like P, T and ρ
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• The entropy/adiabat S/α

 

changes through 
dissipation or heat sources or sinks 
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• We call α
 

the “adiabat”

• In an ideal gas (no dissipation) and without sources
and sinks, the entropy/adiabat is a constant of motion
of each fluid element 
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A low adiabat (entropy) gas is easy to compress
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• in HEDP, the constant in the definition of the adiabat comes 
from the normalization of the pressure with the Fermi pressure

• smaller α less work to compress from low to high density
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What is a shock?
• If a gas/plasma is rapidly compressed by a piston,

the acoustic/compression waves launched by the
piston overlap due to the always increasing sound
speed of a compressed gas/plasma. This overlap
causes a steepening of the hydro properties SHOCK
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shockwaves

Sound speed
increases with density



The flow of mass, momentum and energy is conserved
across the shock front Rankine-Hugoniot conditions
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• For an ideal gas/plasma
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• For example: assign, ρ1 , p1 and p2 to find ρ2 , u2 , u1 =-Ushock
using the three R-H conditions



For a strong shock (p2 >>p1 ) the R-H are simplified
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In an ideal gas/plasma, the adiabat α
 

is constant
unless a shock is present that raises the adiabat
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• If the target is initially cryogenic solid DT at 18K, then 
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In order to accelerate a shell to high velocity
without raising the adiabat, the pressure must
be “slowly” increased after the first shock.

t
Foot

Imax ~1015W/cm2

tsbtsb /2

I(t)
Flat top

• After the foot of the laser pulse, the laser intensity
must be raised starting at about 0.5tsb and reach its
peak at about tsb

• Reaching Imax at tsb prevents a rarefaction/decompression
wave to propagate back from the rear target surface
and decompress the target.

tsb is the shock
break-out time

I(t) is the time
dependent laser
intensity

Laser pulse shape

Ifoot ~1013W/cm2



Most of the laser energy absorbed by the plasma goes
into the kinetic and thermal energy of the expanding 
blow-off plasma rather than into kinetic energy of the 
imploding shell
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Shell Newton’s law Shell mass decreases
due to ablation

Ablation pressure =
Abl. Rate X exhaust vel.

The rocket model



Integrating the rocket equations yields the shell velocity,
the shell mass and the hydro efficiency that depends
on the ablated mass.
• Assume that driver (i.e. Pa ) is on till the shell is about ½ initial radius
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Efficiency is maximum for Mfinal ~0.2Minitial . This is not a good operating point
for a DT ablator (Direct Drive) but works for a non-DT ablator (Indirect Drive)
For Direct Drive ηh ~8-10%.
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Homework problem

• Design a direct-drive laser pulse for a cryogenic DT shell with    
inner radius R1 =1.35mm and outer radius R0 =1.7mm. Plot the   
laser power in Terawatts (1012W/cm2) versus time in   
nanoseconds (10-9 s).

• The laser always shines on the outer surface at r=R0

• The total pulse energy is 1.5MJ

• The initial DT density is 0.25g/cc. 

• The maximum laser intensity is 1015 W/cm2



• The foot of the laser pulse must set the shell on an adiabat α=3

• Calculate the shock break-out time tsb

• Use a cubic power law in time to raise the intensity from 0.5tsb to tsb

• For a UV laser with λL =0.35μm, estimate the ablation pressure
at Imax ,  the fraction of ablated mass and the hydro-efficiency

• Assuming 60% of laser energy absorption, estimate the final shell  
implosion velocity

Homework problem (continue)
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