PIC simulations on resonance absorption and electron heating

R. Yan, G. Li and C. Ren
University of Rochester
Background in resonance absorption and Raman/2ω_p instabilities

- When laser lights are obliquely incident on an inhomogeneous plasma and polarized in the plane of incidence, they can be resonantly absorbed near the critical surface.
 - A large plasma wave can be generated due to resonance absorption.
 - Energetic electrons are accelerated by plasma wave, which might preheat the target in ICF.
- Raman/2ω_p instability is another important energetic electron generation mechanism.
 - Part of the incident energy is scattered, part goes to the plasma wave, which heats plasmas as it damps.
 - They can generate very energetic electrons that can also preheat the target.
The Scheme of ICF

1. Irradiation
 - Laser or x-ray drive
 - DT fuel-filled pellet
 - Expanding blowoff
 - Imploding pellet

2. Compression
 - Compressed pellet

3. Thermonuclear ignition
 - Deuterium
 - Tritium
 - Helium 4
 - Neutron

Temperature vs. Mass density vs. Radius

Hot spot
Burn wave

Courtesy of D. Meyerhofer
An introduction to Particle-in-Cell (PIC) simulation

• Particle-in-Cell methods are widely used to simulate plasma physics especially when kinetic description is important.

Particles in cells

Computational cycle
(at each step in time)

Particle positions z_i, v_i

$d\vec{p}/dt = \vec{E} + \vec{v} \times \vec{B}/c$

$\rho_{n,m}, \vec{J}_{n,m}$

$\vec{E}_{n,m}, \vec{B}_{n,m}$

• Solve fields by Maxwell’s equations
• Update particle’s position and momentum by Lorentz force

Weight to grid

Push particles

Interpolate to particles

•
A linear density profile is used in all simulations

Density gradient scale length: \(k_0L = 100 \)
\(T_e \approx 600eV \)
Fixed ions or mobile ions with \(m_i = 1836m_e \)
\(T_i = T_e \)

1. \(v_{os} / c = 0.015 \) (\(I = 2.8 \times 10^{15} \text{ w/cm}^2 \) for \(3\omega \))
2. \(v_{os} / c = 0.15 \) (\(I = 2.8 \times 10^{17} \text{ w/cm}^2 \) for \(3\omega \))
At low intensity, there is only resonance absorption at the critical surface

Fixed ions

\(\nu_{os} / c = 0.015 \)

\(\theta = 8.8° \)

\(k_0 L = 100 \)

\((k_0 L)^{2/3} \sin^2 \theta \approx 0.5 \)
A large electron plasma wave generates hot e^- at the critical surface

e^- distribution in phasespace $p1x1$
after resonance took place

Consider hot e^- (>5kev) around critical surface (95-105 c/ω_p)

$E_{\text{forward}} = 1.5E_L$ (input in a period) \hspace{1cm} \bar{E} = 6.2keV

$E_{\text{backward}} = 1.8E_L$ (input in a period) \hspace{1cm} \bar{E} = 6.3keV

And they are mostly trapped.
Hot e^- near critical surface can be freed in mobile ions case

Phase space of energetic (>5kev) electrons

$E_{\text{forward}} \approx 13\% E_L$

$\bar{E} \sim 14\text{keV}$
Higher intensity laser causes additional Raman/\(2\omega_p\) scatterings near the \(\frac{1}{4}\) critical surface

\[\nu_{os}/c = 0.15 \]

Threshold for \(2\omega_{pe}\) instability:

\[\left(\frac{\nu_{os}}{\nu_e} \right)^2 > \frac{12}{k_0 L} = 0.12 \quad \text{(from Kruer's book)} \]

for \(\nu_{os}/c = 0.015, (\nu_{os}/\nu_e)^2 = 0.18\)

\(\nu_{os}/c = 0.15, (\nu_{os}/\nu_e)^2 = 18\)
Additional plasma wave and density perturbation at \(\frac{1}{4} \) critical surface

Fixed ions
\[\frac{v_{os}}{c} = 0.15 \]
\[\theta = 8.8^\circ \]
\[k_0L = 100 \]
The instabilities at the $\frac{1}{4}$ critical surface have multiple modes
A pair of modes are found satisfying the frequency and wave number matching conditions

Matching conditions for $2\omega_p$ instability (from Kruer's book):

\[\omega_0 = \omega_{ek1} + \omega_{ek2} \]
\[\vec{k}_0 = \vec{k}_1 + \vec{k}_2 \]

in this case, \[\vec{k}_0 = 0.9883\vec{e}_x - 0.1523\vec{e}_y \]
\[\vec{k}_1 = 0.3592\vec{e}_x - 0.1523\vec{e}_y \]
\[\vec{k}_2 = 0.6296\vec{e}_x \]
FFT in time shows the strongest mode has the frequency close to $\frac{1}{2}\omega_0$.
Hot e^- near $\frac{1}{4}$ critical surface can move freely forward

$\nu_{as}/c = 0.15$ mobile ions
Hot e^- near $\frac{1}{4}$ critical surface can move freely forward(2)

Hot (>50kev) electrons' distribution in x-px space

$v_{os}/c = 0.15$

mobile ions

Hot e^- at $1/4$ critical surface can move forward. $E_{\text{forward}} \approx 3\%E_L$ \hspace{1cm} $\bar{E} = 138keV$

For fixed ion case, at critical surface, electrons seem trapped. $E_{\text{forward}} = 1.2E_L$ (input in a period) \hspace{1cm} $\bar{E} = 66keV$

$E_{\text{backward}} = 1.4E_L$ (input in a period) \hspace{1cm} $\bar{E} = 67keV$
Hot e^- near $\frac{1}{4}$ critical surface can move freely forward(3)
Energy distribution

<table>
<thead>
<tr>
<th>v_{os}/c</th>
<th>$I(w/cm^2)$</th>
<th>k_0L</th>
<th>$K.E.$ (forward) due to 2ω</th>
<th>$K.E.$ (forward) due to resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>2.8×10^{15}</td>
<td>100</td>
<td>$(-50keV)$</td>
<td>$(>5keV)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$13%E_L$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\bar{E} \approx 14keV$</td>
</tr>
<tr>
<td>0.15</td>
<td>2.8×10^{17}</td>
<td>100</td>
<td>$(>50keV)$</td>
<td>$(>50keV)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3%E_L$</td>
<td>$4%E_L$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\bar{E} \approx 138keV$</td>
<td>$\bar{E} \approx 90keV$</td>
</tr>
</tbody>
</table>
Summary

• Most of the hot electrons generated near the critical surface are trapped.
 – Response of ions can change the energetic electrons’ stream.

• Intense laser causes Raman/2ωp instability near the ¼ critical surface.
 – Hot electrons generated near the ¼ critical surface can freely move forward.
 – They have higher average kinetic energy than those generated near the critical surface.